
Genetic heterogeneity underlies the evolution and 
adaptation of all life on Earth. This is equally true of 
stochastically generated variants in germ cells as it is of 
somatic cells within tumours and ageing tissues. Rare 
variants can selectively proliferate upon exposure to new 
environments through natural selection1–3. Intercellular 
genetic diversity underlies many elements of human 
disease, including the emergence of therapeutic resist-
ance to antimicrobial and anticancer therapies4,5, the 
development of certain inherited genetic diseases6 and 
ageing and age-associated pathologies7,8. Yet despite its 
importance, until the past decade, our tools for quanti-
fying and studying genetic variation in heterogeneous 
cell populations have been limited.

Beginning in 2005, a new generation of tools, referred 
to by the now somewhat anachronistic moniker of 
next-generation sequencing (NGS), emerged and wholly 
reshaped genetics9. NGS technologies have reduced the 
cost and increased the scale of genomic investigations by 
many orders of magnitude. They have transformed the 
study of genetic variation in humans and model organ-
isms, elucidated the genetic basis of some diseases and 
advanced our understanding of the organization, reg-
ulation and function of genomes with unprecedented 
granularity10. Multiple distinct NGS platforms now exist, 
but all share the same fundamental feature of parallel 
interrogation of millions of individual DNA templates. 
The digital nature of the approach stands in contrast 
to the prior gold-standard Sanger method of sequenc-
ing aggregate populations of molecules11. Although 

this makes NGS methods potentially more sensitive 
for quantifying genetic heterogeneity, the vastly higher 
throughput means that, in practice, the absolute number 
of errors to contend with is greater than ever before.

Nearly all measurements in science are limited by 
the signal-to‑noise ratio of the assay (FIG. 1), and genetic 
heterogeneity is no exception. The rarer the vari-
ant, the more sensitive a technique must be to find it. 
Historically, scientific aspirations in this field exceeded 
the capabilities of available tools. For germline sequenc-
ing where variants are clonal, high-confidence geno-
types can still be obtained, despite the modest accuracy 
of standard NGS, by redundantly sequencing identical 
genomic copies from multiple cells of an individual and 
ignoring erroneous read‑to‑read variation. By contrast, 
shortcomings in accuracy fundamentally limit the sen-
sitivity of routine NGS for detection of low-level genetic 
variation in subclonal populations encompassing fewer 
than ~1% of the DNA molecules in a sample12,13. This 
has been a particular challenge for the reliable identifi-
cation of somatically acquired mutations in multicellular 
organisms and for disentangling mixed microbial popu
lations. Several recent advances have now markedly 
improved NGS accuracy and therefore our capability 
to detect rare variants; the deeper we have been able to 
look, the more reasons we are now discovering to look 
even deeper.

In this Review, we summarize the transformative 
impact of NGS on resolving molecular heterogeneity 
and survey the technical evolution of computational, 
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Clonal
When referring to a genetic 
variant or mutation, it is one 
that is present in all or most 
molecules in a population 
being sequenced. The term 
typically implies that it arose 
from a common ancestor, such 
as a fertilized egg in the case of 
germline variation, or the 
earliest founder cell of a 
tumour.
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Abstract | Mutations, the fuel of evolution, are first manifested as rare DNA changes within a 
population of cells. Although next-generation sequencing (NGS) technologies have 
revolutionized the study of genomic variation between species and individual organisms, most 
have limited ability to accurately detect and quantify rare variants among the different genome 
copies in heterogeneous mixtures of cells or molecules. We describe the technical challenges in 
characterizing subclonal variants using conventional NGS protocols and the recent development 
of error correction strategies, both computational and experimental, including consensus 
sequencing of single DNA molecules. We also highlight major applications for low-frequency 
mutation detection in science and medicine, describe emerging methodologies and provide our 
vision for the future of DNA sequencing.
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Subclonal
When referring to a genetic 
variant or mutation, it is one 
that is present in only a subset 
of molecules being sequenced. 
This may refer to either a 
variant carried by a 
subpopulation that arose and 
expanded within a larger 
population or through mixing 
of two or more distinct 
populations.

Sequencing accuracy
The number of errors made per 
base pair sequenced. It may be 
stratified by subtype of error, 
such as a specific type of base 
substitution.

biochemical and recently developed single-molecule 
consensus methods for error correction that help miti-
gate the inherently high error rates of NGS platforms. We 
discuss emerging technologies that have the potential to 
further enhance our understanding of the role of rare 
genetic variants and highlight major fields of research 
that either have or will soon benefit from advances in 
sequencing accuracy for the purpose of obtaining higher 
sequencing sensitivity. We close with a discussion of future 
opportunities and the next wave of technical sequencing 
challenges we see on the horizon.

Subclonal mutation detection
For many areas of medicine and biology, genetic hetero
geneity is the rule rather than the exception. Although 
several sensitive technologies for low variant allele fre-
quency (VAF) mutation detection predated the advent 
of NGS, these were limited to interrogation of very small 
genomic regions and not easily transferred between 
loci14,15. Various methods for selective amplification of 
low-frequency variants facilitate detection but lack the 
ability to precisely quantify their relative abundance16. 
Digital PCR is a powerful technique that can be used for 
both precise molecular counting17 and, in allele-spe-
cific forms, robust low-frequency mutation detection18.  

In recent years, the method has become more wide-
spread with the advent of convenient high-throughput 
emulsion-based platforms, referred to as digital droplet 
PCR19; however, variants being sought typically must 
be known a priori. NGS is indisputably the most gener-
alizable method of mutation detection, but it has been 
only recently that technical advances have allowed it to 
achieve a comparable accuracy.

At the outset, we acknowledge that comparing the 
accuracy of different NGS protocols is challenging. The 
error rate of conventional NGS is approximately 1% and 
can be as low as 0.1% in optimal scenarios20. However, 
the precise value varies by specific platform, chemistry 
version, sequence context, filtering stringency and var-
ious other factors that make for lively discussions but 
few hard-and-fast agreements among researchers. The 
accuracy of many error-correction methodologies is 
similarly affected by variables that are difficult to nor-
malize between studies, such as degree of DNA damage 
and whether the DNA standard being sequenced is, itself, 
truly free of mutations. Diluted oligonucleotide templates 
with defined sequences are often used to represent rare 
variants in published mixing experiments, but the fre-
quency of errors during oligonucleotide synthesis may 
be as high as 1 in 100. Similarly, although standardized 
cell lines are an attractive source of DNA that can be 
benchmarked against by different researchers, it has been 
shown that, in at least some situations, the mutations that 
accumulate during a few months in culture can exceed 
those accrued over an entire human lifetime21. For all 
these reasons, we have opted to limit our comparisons of 
method accuracy to orders of magnitude.

Improving the accuracy of NGS
Most attempts to lower the limit of detection for com-
mercially available NGS platforms can be grouped into 
one of three broad categories. The first category con-
sists of purely computational and statistical strategies to 
exclude sequences of low confidence from convention-
ally generated NGS data. The second strategy consists of 
library preparation protocols that either biochemically 
remove or limit the formation of mutagenically damaged 
nucleotides in templates before sequences are generated. 
We review both of these categories in this section. The 
third and most successful type of strategy is single-
molecule consensus sequencing, which we describe in 
subsequent sections. This more contemporary latter 
approach involves an intertwined combination of chem-
ical labelling before sequencing and informatic decon-
volution thereafter, which allows for the identification 
and exclusion of errors that invariably occur despite all 
other measures.

Computational reduction of sequencing artefacts. 
Initial efforts to reduce the background error rate of 
NGS focused on data filtering schemes to discount 
low-confidence sequences caused by technical artefacts. 
Phred quality scores, originally developed for Sanger 
sequencing electropherograms to estimate the proba-
bility of an error at each sequenced base22, were adapted 
for the image-based output of NGS platforms23.
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Figure 1 | The signal-to‑noise problem. The accuracy of all analytical measurements, 
DNA sequencing included, depends on the ratio between true value and the precision 
of the detection method. This is analogous to the noisiness of a digital camera image: at 
a low signal-to‑noise ratio, an image is indecipherable (part a); with increasing sensor 
quality an oval shape appears (part b), becomes apparent as a face (part c) and then as a 
specific individual (part d). Figure is adapted from REF. 205, CC-BY-4.0 (https://
creativecommons.org/licenses/by/4.0/).
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Sequencing sensitivity
The ability to detect a variant 
at a particular variant allele 
frequency. This depends on 
both the sequencing accuracy 
and the number of 
independent DNA molecules 
successfully sequenced that 
include the genomic position 
(or positions) of interest.

Variant allele frequency
(VAF). The fraction of all 
molecules being sequenced 
that carry a specific genetic 
change or mutation at a 
particular genomic position.

Digital PCR
DNA amplification carried out 
in single-molecule reaction 
chambers. Recently, this has 
most often entailed 
microscopic aqueous droplets 
immersed in oil. When DNA 
input is sufficiently low, only 
one molecule will seed each 
reaction. When allele-specific 
amplification conditions are 
used, the number of droplets 
that successfully amplify can 
be digitally tabulated to 
determine the variant allele 
frequency.

Polony
A population of identical 
amplification copies that 
originated from a single 
founder molecule and are 
spatially colocalized, such as 
on the surface of a microbead 
or as a spot on a surface. It is 
the biochemical analogue of a 
bacterial colony on a Petri dish.

Quality score filtering does not improve accuracy 
if the errors are introduced before the sequencing, for 
example, during PCR amplification. A variety of bio
informatics tools, such as MuTect24 and VarScan2 
(REF. 25), use additional filters, such as whether var-
iants are biased towards the beginning or ends of 
reads (reflecting erroneous end-repair of fragments or 
mapping errors), or require that true variants be seen 
in multiple independent sequencing reads or both 
read orientations26. Newer alignment algorithms and 
read-trimming tools are better able to avoid artefacts 
from off-target mapping or inadvertent sequencing into 
artificial adapter or primer sequences used in library 
preparation27. Increasingly sophisticated software pack-
ages that are specifically designed for the detection of 
low-frequency variants in traditional NGS data are able 
to eliminate many false calls through rigorous statisti-
cal approaches that involve modelling the error profile 
of specific sequencing applications, or even individual 
sequencer runs, and using these to appropriately assign 
confidence to particular conclusions28,29.

Some sequencing errors can be identified and 
removed empirically by simultaneously sequencing a test 
sample that is thought to have subclonal mutations (for 
example, a tumour) alongside an apparently homogene-
ous control sample30. Low-level variants in the control 
sample are assumed to reflect sites with a higher pro-
pensity for technical errors and are discounted from all 
samples. As increasingly large sequencing data sets are 
generated, databases of specific sequence contexts that 
recurrently yield artefactual errors can be identified and 
viewed more sceptically. Particular mutation patterns, 
such as those resulting from oxidative DNA damage31,32, 
or engineered polymerases and nucleotides used during 
sequencing33 can be partially remedied informatically. 
Nevertheless, even the most careful computational data 
scrubbing cannot universally produce high-confidence 
calls of subclonal mutations much below 1% abun-
dance13,34–36, and the more aggressive the approach, the 
greater the risk of excluding true rare variants.

Biochemical reduction of sequencing artefacts. Errors 
arising during the generation of NGS data can occur at 
many stages. Mistakes can occur on the sequencer itself 
as a result of optical imperfections, enzymatic errors 
during cluster formation or overlapping or polyclonal 
clusters, among other issues33,37. Substantial errors can 
also arise during pre-sequencing library preparation 
as a result of PCR misincorporations, chimeric PCR 
products, template switching or hairpin formation37–40. 
Although high-fidelity proofreading polymerases are 
typically used for amplification steps, lower-fidelity 
polymerases may be used for preceding repair and 
A‑tailing of library fragments. Furthermore, all poly-
merases are considerably more error prone when copy-
ing across damaged nucleotide templates. Such damage 
may be present at the time of sampling from normal 
cell processes or environmental exposures but can also 
occur from extrinsic manipulations, for example chem-
ical extraction, heating or clinically used stabilization 
methods such as formalin fixation41,42.

A common step in library preparation is ultrasonic 
shearing of DNA into short fragments. This produces 
sufficient energy to break the phosphodiester backbone, 
which can also oxidize bases and lead to artefactual 
C:G to A:T transversion mutations. This can be some-
what reduced by pH buffering and cation chelation31,32. 
Furthermore, nicks and non-blunt-ended breaks pro-
duce regions of single-stranded DNA, which are both 
biochemically more susceptible to damage43 and sub-
jected to copying by lower-accuracy polymerases dur-
ing end-repair steps in adapter-ligation-based library 
preparation methods. Enzymatic DNA fragmentation 
methods avoid some of these issues, but at the same time 
may produce other low-level artefacts as a result of nicks, 
abasic sites or other incomplete cleavage products that 
vary by the enzymatic mechanism44.

Although some DNA damage may be prevented, 
other sources are unavoidable. Both formalin-fixation 
and heating accelerate the rate of spontaneous de
amination, particularly of cytosine to uracil, to produce 
C:G to T:A substitutions upon PCR amplification42,45. 
Uracil bases in DNA can be excised by treatment with 
uracil-DNA glycosylase (UDG), which yields abasic 
sites that are resistant to amplification46,47. However, 
abasic sites are, themselves, somewhat mutagenic if 
copied: polymerases typically mis-insert an A when 
encountered48,49, which also generates a single nucleo-
tide C:G to T:A substitution. Destruction of the remnant 
phosphodiester backbone at abasic sites with a DNA 
lyase, commonly endonuclease VIII, may somewhat 
abrogate this42.

Another common mutagenic base modification, 
8‑oxo‑dG, is formed by oxygen free radicals and read-
ily mis-pairs with adenine to lead to C:G to A:T muta-
tions50. 8‑Oxo‑dG can be biochemically excised by 
incubating with formamidopyrimidine [fapy]-DNA 
glycosylase (FPG), which has both glycosylase and lyase 
activity42,46. As with UDG, treatment can reduce artefacts 
but may also render some highly damaged DNA un
amplifiable. This can be a particular problem with some 
low-input applications described later. Combinations of 
glycosylases with other repair enzymes to replace the 
damaged base may improve amplifiability32, yet this 
treatment itself may introduce errors at low levels.

Nevertheless, although biochemical approaches, in 
concert with computational strategies, have a positive 
effect on improving NGS accuracy, it is relatively mod-
est. Not all mutagenic damage can be prevented, and not 
all damage that occurs can be easily corrected. For exam-
ple, spontaneous deamination of 5‑methylcytosine gen-
erates a canonical thymine base. To achieve error rates 
below 1 in 1,000, other techniques are required.

Molecular consensus sequencing strategies
Following the release of the first commercial NGS 
platform in 2005, efforts to improve accuracy initially 
focused on refining the core elements of sequencers 
themselves. During the next several years, iterative 
improvements to optics, polony formation methods, 
sequencing-by‑synthesis chemistry and on‑machine 
data filtering boosted the accuracy of raw outputted data 
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Tag-based error correction
Also known as consensus 
sequencing, an approach for 
error correction whereby 
individual DNA molecules are 
uniquely labelled before 
amplification and sequencing, 
and the sequences of the 
related derivative copies are 
then compared with each other 
to exclude errors.

Short-read platforms
Next-generation sequencing 
systems that generate reads 
that are dozens to several 
hundreds of nucleotides in 
length, for example, the current 
Illumina and Thermo Fisher 
Scientific Ion Torrent platforms 
and previously manufactured 
Roche 454 and ABI SOLiD 
platforms. Current versions 
sequence amplified polonies, 
not single molecules.

Long-read platforms
Next-generation sequencing 
systems that generate reads 
that are thousands to tens of 
thousands of nucleotides in 
length. These currently include 
Pacific Biosciences (PacBio) 
and Oxford Nanopore 
Technologies, which sequence 
single molecules, not polonies, 
and therefore have a higher 
error rate than short-read 
platforms.

Molecular barcode
Also known as a unique 
molecular identifier (UMI). A 
set of DNA nucleotide codes 
where each is affixed to only 
one or a subset of individual 
DNA molecules within a 
sample. The purpose is to 
uniquely label single molecules 
for consensus-based error 
correction or molecular 
counting. These may be 
informatically combined with 
molecule fragmentation points 
for greater label diversity.

Index sequence
A particular DNA nucleotide 
code affixed to all molecules 
within a given DNA sample that 
is used for multiplexing 
samples on a single sequencer 
run.

Sequencing depth
The number of sequencing 
reads that include a particular 
genomic position in their 
sequence. Some may be 
simply PCR copies of the same 
molecule.

by about an order of magnitude. Paired-end sequenc-
ing allowed additional confirmation of the identity of 
bases sequenced from both ends of a molecule. During 
the past several years, although NGS throughput has 
increased dramatically, improvements to raw accuracy 
have largely plateaued; on some high-output platforms, 
it has even decreased51. Recognizing that some biochem-
ical mistakes are unavoidable, in approximately 2009, an 
innovative solution for improving accuracy was devel-
oped that focused on identifying and ignoring errors, 
rather than preventing them entirely52. The approach, 
eventually becoming known as single-molecule consen-
sus sequencing, tag-based error correction or molecular 
barcoding, rapidly emerged through the work of mul-
tiple investigators to become a new standard for high-
accuracy NGS applications53–55. We begin with reviewing 
different embodiments of this concept that apply to the 
short-read platforms, which currently comprise most of 
the NGS market. In the subsequent section, we discuss 
consensus sequencing approaches that apply to the com-
mercially available long-read platforms that rely on direct 
sequencing of single DNA molecules.

Barcoding of individual DNA molecules. During con-
ventional short-read platform NGS, a DNA library is 
typically PCR amplified before sequencing. It is often 
impossible to definitively know whether two identical 
sequence reads arose from copies of the same starting 
molecule or from two independent molecules. However, 
if a unique tag (that is, a molecular barcode) is applied 
to each molecule before amplification, this label will 
be propagated to all derivative copies and independent 
sequence reads can thus be recognized as having arisen 
from a common founder. It is worth noting that the con-
cept of a molecular barcode (also known as a unique 
molecular identifier (UMI), a single-molecule identifier 
(SMI) or simply a tag) is different from that of an index 
sequence. Molecular barcodes serve to uniquely label 
individual molecules within a sample, whereas index 
sequences are identical DNA labels that are affixed to all 
molecules in a given sample for the purpose of sample 
multiplexing.

Molecular barcodes can be used to improve the accu-
racy of counting DNA or RNA molecules in mixtures 
by eliminating biases from variable amplification54,56–59. 
More importantly, because all identically tagged reads 
will have derived from a common founder (provided 
that barcodes are designed carefully), any variation 
between their actual sequences must necessarily reflect 
technical errors53–55. Tag-based error correction relies on 
this principle: independent reads sharing a common tag 
are recognized and grouped as amplicon copies of the 
same starting molecule; any sites of sequence differences 
among the reads are discounted as errors when forming 
a consensus sequence (FIG. 2). A fundamental element of 
the approach is the need to intentionally produce and 
sequence redundant molecular copies, which requires 
relatively higher raw sequencing depth than conventional 
NGS and, thus, additional costs.

Molecular barcodes come in two forms: exogenous 
and endogenous53,55. Exogenous barcodes entail random 

or semi-random artificial sequences that are incorpo-
rated into either sequencing adapters or PCR prim-
ers. Endogenous barcodes describe the randomly or 
semi-randomly generated fragmentation points at the 

Figure 2 | Methods of consensus-based error correction 
on short-read platforms. a | The Safe Sequencing System 
(SafeSeqS) uses randomly generated molecular barcodes 
carried by PCR primers (coloured thick bars) to reduce 
errors by independently labelling each single-stranded 
DNA molecule, thus allowing identification of derivative 
copies. True mutations (circles) can be discerned from 
sequencing errors or late PCR errors (crosses) because the 
latter occur only in a subset of identically labelled 
duplicate reads. PCR errors that occur during the first cycle 
of amplification (triangles) can be propagated to all 
duplicates and escape error correction. b | Single-molecule 
molecular inversion probes (smMIPs) entail two targeting 
arms joined by a linker that contains a molecular barcode. 
The molecules are hybridized with single-stranded DNA 
and then extended and ligated to form closed loops that 
are amplified and sequenced. Consensus-based error 
correction is similar to SafeSeqS and similarly susceptible 
to first-cycle amplification artefacts. c | Circular 
sequencing (CircSeq) entails circularization of 
single-stranded DNA fragments without any molecular 
barcodes followed by rolling-circle amplification, 
fragmentation and sequencing of short stretches of 
concatemerized fragments. The molecular fragmentation 
points of the starting molecules serve as unique molecular 
identifiers (UMIs) for consensus-based error correction. As 
with other single-stranded consensus methods, recurrent 
amplification errors may fail to be identified and corrected. 
d | UMI-tailed adapters can be ligated to a library to 
uniquely mark each single strand. Despite both strands in a 
complex being tagged, no means are provided to relate the 
consensus of one strand to that of its mate for comparison, 
and early PCR errors (triangles) may go unrecognized. 
e | CypherSeq circularizes double-stranded DNA 
molecules using a single adapter-molecule-containing 
double-stranded molecular barcode. Targeted enrichment 
is achieved with rolling-circle amplification using primers 
directed to each DNA strand. Although information from 
both strands may contribute to consensus making, lack of 
asymmetry between the two strands makes it impossible to 
discern whether one or both strands is successfully 
amplified. Recurrent early amplification errors (triangles) 
can escape error correction when only one strand worth of 
data is successfully recovered because this cannot be 
recognized. f | Duplex sequencing (DupSeq) allows true 
duplex error correction on high-throughput short-read 
sequencing platforms by applying molecular barcodes to 
each double-stranded DNA molecule in such a way that 
amplification products of the two strands can be 
informatically related to each other (thick coloured bars) 
but also distinguished (blue versus green strands). After 
tagging, derivative PCR products are grouped by 
molecular barcode and by strand. Consensuses are made 
for each strand group and then compared to that of the 
complementary strand. True mutations (circles) can be 
confidently distinguished from both sequencing errors and 
late PCR errors (crosses) as well as first-round PCR errors 
(triangles) because complementary errors are extremely 
unlikely to occur by chance at the same position on both 
DNA strands. See the main text for a detailed description 
of each method. MIP, molecular inversion probe.
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Molecular depth
The number of collapsed 
consensus reads derived from 
an independent DNA molecule 
that include a particular 
genomic position.

Tag clashes
The occurrence of two 
independent molecules being 
identically labelled by random 
chance. This may happen if the 
diversity of the applied 
molecular barcodes is too low 
for the number of DNA 
molecules sequenced. True 
mutations may erroneously be 
excluded.

False families
Sets of related molecules 
where an error has occurred 
during amplification that 
mutates the common tag 
sequence to erroneously make 
it appear that two independent 
molecules gave rise to these 
molecules.

ends of DNA molecules in ligation-based library prepa-
ration methods. The two approaches can be used either 
alone or in combination60.

With either approach, it is important that a sufficient 
variety of possible tag sequences exist such that the prob-
ability of two independent molecules being tagged the 
same way is low. With sequencing at low molecular depth, 
the chance of two independent DNA fragments having 
the same shear points by chance is small, and these 
endogenous sequences alone suffice as tags60,61. At the 
other extreme is deep sequencing following an ampli-
con-based library preparation. In this case, molecular 
ends are defined by invariant primer sites, not random 
fragmentation, so all tag information must come from 
exogenous tags55. A similar problem arises with tar-
geted enzymatic fragmentation62. If barcode diversity is 
inadequate, tag clashes can occur, whereby independent 
molecules are identically labelled. In this scenario, true 
low-frequency variants can be erroneously discarded as 
errors. If barcodes are too complex, they may develop 
errors themselves and artificially create false families that 
incorrectly appear as arising from distinct molecules. 
Both problems can be mitigated with careful design and 
strategies for tolerating errors in barcodes63–65.

Over the past 5 years, molecular consensus sequenc-
ing has proved itself as the most impactful means for 
reducing NGS errors. Different implementations variably 
reduce sequencing error rates from ~10−2 to 10−4–10−7 or 
lower. The variety of approaches developed to date can be 
grouped into three basic categories: single-strand consen-
sus sequencing; two-strand consensus sequencing; and 
duplex consensus sequencing (FIG. 2).

Single-strand consensus sequencing. One of the most 
widely cited early implementations of tag-based NGS 
error correction is the safe sequencing system (SafeSeqS) 
technique, which applies tags via PCR primers carry-
ing a degenerate sequence tail55. In this method, after a 
small number of PCR cycles with the barcoded primers, 
additional amplification with a second set of universal 
primers is carried out to generate multiple copies of 
each tag-defined founding molecule, which are then 
sequenced and grouped into families for consen-
sus-based error correction (FIG. 2a). A substantial chal-
lenge to widespread implementation was the difficulty 
of sequencing large numbers of targets at the same time 
because of PCR multiplexing problems caused by the 
random tags. Newer variations on the technique that 
protect the tags from nonspecific binding through the 
use of a hairpin design have somewhat reduced this 
problem66,67.

Primer-based tagging is convenient in so far as it 
facilitates sequence targeting at the same time as tag-
ging for error correction, but because several PCR  
tagging cycles are needed, the same DNA molecule will 
occasionally be labelled by more than one tag and create 
false families. Another tagging method that circumvents 
this issue is the use of single-molecule molecular inver-
sion probes (smMIPs)68,69. Instead of a pair of primers, 
a single oligonucleotide with two targeting arms con-
nected by a linker region with a molecular barcode is 

hybridized to a DNA sample and then extended and 
ligated to form tagged, closed-loop products that can 
then be enriched, amplified and sequenced (FIG. 2b). 
With smMIPs, many targets can be easily multiplexed 
together, and there is little risk of double-tagging the 
same molecule. Design constraints around the narrow 
proximity window for the targeting arms add a chal-
lenge, but improved software algorithms have recently 
made the method more tractable70.

Another consensus sequencing method that 
takes a very different approach is circular sequencing 
(CircSeq)46,71. In this technique, DNA is fragmented 
and melted into very short single-stranded pieces that 
are then circularized and copied into concatemers via 
rolling-circle amplification. The concatemers are fur-
ther amplified and then sequenced (FIG. 2c). Instead of 
exogenously applied barcodes, the unique genomic 
coordinates of fragmentation points serve as molecu-
lar identifiers to define which sequence reads derived 
from a given starting molecule. The fact that tandem 
copies of the sequence are physically joined means that 
each sequencing read contains the necessary informa-
tion for an initial level of consensus calling. In contrast 
to tag-based barcoding of unlinked copies, which may 
have either too few or an excess of copies present, this 
linkage improves cost-efficiency by keeping the dupli-
cate rate more uniform. The two major challenges to 
the approach are the very limited length of sequences 
that can be genotyped as tandem copies on short-read 
platforms (some solutions have subsequently been devel-
oped72) and the risk of tag clashes that stems from the use 
of the inherently limited number of possible shear points 
as identifiers73. Nevertheless, the concept of sequencing 
tandem linked copies is powerful and will undoubtedly 
become more relevant as the performance of long-read 
platforms improves.

Most of the applications for NGS do not require an 
entire genome to be sequenced, and targeting of spe-
cific regions is important to reduce costs. NGS library 
preparation workflows involving DNA fragmentation, 
adapter ligation and then hybrid capture enrichment of 
loci of interest are slightly more time consuming than 
amplicon-based methods but are generally easier to 
design and, thus, are more widely used. One of the most 
easily implemented and popular consensus sequencing 
approaches that has made its way into many commercial 
products in the past 2 years incorporates a degenerate 
UMI sequence into one adapter strand74. Depending 
on the implementation, either one or both (the version 
shown in FIG. 2d) of the library fragment strands are thus 
labelled. The combination of variable shear points and 
high-diversity exogenous UMIs substantially reduces the 
risk of tag clashes.

All single-strand consensus techniques reduce errors 
by two to three orders of magnitude, which is far greater 
than any prior computational or biochemical approach, 
and make it possible to accurately identify rare variants 
below 0.1% abundance. However, certain errors persist. 
All four methods rely on consensus sequencing of tagged 
copies derived from just one strand of what are natively 
double-stranded DNA molecules. Mistakes that occur 
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during the first round of amplification can be propa-
gated to all other copies as jackpot errors that escape 
correction (that is, the yellow triangles in FIG. 2a). This 
is particularly true of mis-incorporation errors at sites 
of mutagenic DNA damage, especially 8‑oxo-guanine 
adducts and deaminated cytosine bases. This is clearly 
apparent in the spectrum of background errors from 
any single-stranded tagging method: G>T and C>T 
mutations stemming from oxidation and deamination, 
respectively, are far more frequent than the recipro-
cal mutations C>A and G>A. True mutations should 
be present in equal proportions of complements60. 
The developers of CircSeq noted that this mutational 
bias could be partially abrogated by treatment with  
damage-removing glycosylases46.

Two-strand consensus sequencing. DNA is a double-
stranded molecule for a reason. The ability to unwind 
and independently copy each half facilitates cell division. 
The biochemically enforced rule-based pairing of nucle-
otides is relied upon by cellular machinery to ensure 
high fidelity of strand replication: any mismatches are 
quickly identified and repaired. Conceptually, a tag-
based sequencing approach that takes into account the 
genotype of both DNA strands should achieve a higher 
degree of error correction for analogous reasons. One 
effort to improve upon the SafeSeqS method used bar-
coded PCR primers targeted against both the reference 
and anti-reference strands of regions of interest75. In 
concept, if a mutation is seen in both PCR products, it 
can be viewed with greater confidence. Despite being 
theoretically higher in accuracy than SafeSeqS, because 
the two PCR products that derive from the individual 
strands of any particular molecule will carry different 
random barcodes, the resulting sequences cannot be 
directly related to each other. Although both the refer-
ence and anti-reference strands of molecules in a popu-
lation can be genotyped, there is no way to compare the 
sequence of one strand of a particular double-stranded 
molecule with that of the other, so true double-stranded 
error correction is impossible when concurrently 
sequencing multiple molecules. The same is true of the 
adapter-based UMI approach shown in FIG. 2d.

The first reported tag-based NGS error-correction 
method relied on a ligation-based approach where both 
strands of double-stranded molecules were labelled with 
identical molecular tags followed by PCR amplification, 
then concatemerization of amplicons and sequencing53. 
After amplification, PCR products derived from both the 
reference and anti-reference strands carry the same tags 
and can be grouped to produce an error-corrected con-
sensus. A more recent variant upon this method, known 
as CypherSeq76, incorporates rolling-circle amplification 
from primers targeting both strands after ligation into a 
circularized adapter sequence to achieve a degree of tar-
get enrichment before PCR amplification (FIG. 2e). With 
both methods, PCR products derived from each strand 
of individual molecules can be used to form a consensus 
sequence; however, as the amplicons of the two strands 
are indistinguishable, it is impossible to tell whether 
the resulting consensus is based on single-strand or 

double-strand data. Because one strand often fails to 
amplify, either owing to DNA damage or stochastic fac-
tors, or is simply not sampled60, jackpot amplification 
errors can still escape detection (that is, the yellow tri-
angles in FIG. 2e). A recent preliminary technique known 
as proximity sequencing (Pro-Seq) involves concurrent 
amplification of both the reference and anti-reference 
strands of individual DNA duplexes with physically 
linked primers in emulsion droplets77. This enables gen-
otyping of both strands within the same flow-cell cluster 
for cost savings but has an identical limitation in that 
amplification of both strands cannot be ensured.

Duplex consensus sequencing. In 2012, our group 
described duplex sequencing (DupSeq), a technique 
that uses a special form of molecular tagging to inde-
pendently barcode each strand of individual DNA 
duplexes in such a way that sequence reads derived from 
one strand can be related to but also distinguished from 
that of the other60. Exogenous tags within each strand 
of the sequencing adapters and/or DNA fragment shear 
points serve as UMIs that informatically relate reads 
from the two strands. A non-complementary portion of 
the adapters introduces strand asymmetry that allows 
the products to be distinguished from each other and, 
importantly, allows confirmation that both strands have 
been sequenced (FIG. 2f). To achieve true duplex error 
correction when the strands are separately amplified, 
the adapted molecule must contain both a UMI and an 
asymmetric strand-defining element (SDE). Together, 
these pieces allow a separate consensus sequence to be 
produced for each strand for comparison to that of its 
mate78. In this way, early PCR jackpot errors can be con-
fidently recognized and discounted (that is, the yellow 
triangles in FIG. 2f).

The theoretical DupSeq error rate of <10−9 reflects 
the low probability of a complementary jackpot error 
occurring at the same position on both strands60. In fact, 
one challenge to experimentally verifying this error rate 
is identifying a gold-standard source of DNA that is 
truly devoid of mutations: the lowest frequency of sin-
gle-base substitutions we have measured in the DNA 
of newborn infants is between 10−7 and 10−8, which is 
consistent with mutation frequencies extrapolated from 
differences between human generations79. We and others 
have applied DupSeq to measure variations in the spon-
taneous mutation frequency of microbial populations60 
and in mammalian tissues in the setting of ageing61,80,81, 
neurodegeneration82,83, inherited DNA repair defects84 
and genotoxic exposures61,85. In all cases, the mutagenic 
effect of near or below one mutation per million base 
pairs could only be recognized because of the extremely 
low error rate.

In theory, a variety of other molecular tools could 
serve as DupSeq UMIs and SDEs. Other than shear 
points and DNA-based tags, single-molecule com-
partmentalization methods that keep paired strands 
in physical proximity77 or other non-nucleic acid tag-
ging methods could serve the strand-relating function. 
Similarly, asymmetrical chemical labelling of the adapter 
strands in a way that they can be physically separated 
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Consensus-making 
efficiency
The number of raw sequencing 
reads that are required to form 
a consensus read. This 
typically refers to an average: 
total raw reads divided by total 
consensus reads.

can serve an SDE role. A recently described variation of 
DupSeq uses bisulfite conversion to transform naturally 
occurring strand asymmetries in the form of cytosine 
methylation into sequence differences that distinguish 
the two strands86,87. Although this implementation limits 
the types of mutations that can be detected, the concept 
of capitalizing on native asymmetry is noteworthy in the 
context of emerging sequencing technologies that can 
directly detect modified nucleotides88.

Having distinct elements that both relate and distin-
guish strands in DupSeq reflects the need to add molec-
ular identity information about an original molecule that 
is lost when the paired strands are physically uncoupled 
and copies are made. Whereas this is currently the most 
practical approach with short-read platforms, for newer 
single-molecule long-read sequencing technologies, 
strand uncoupling and/or DNA amplification are often 
not required.

Direct single-molecule consensus sequencing
At the present time, only two types of single-mol-
ecule sequencers are commercially available: those 
manufactured by Pacific Biosciences (PacBio), which 
rely on detection of fluorescent nucleotide incorpora-
tion by single, immobilized polymerases within zero-
mode wave guides89, and those of Oxford Nanopore 
Technologies, which capitalize on the differential cur-
rent changes caused by nucleotides as a single-stranded 
DNA molecule traverses a molecular nanopore between 
two chambers to record the sequence90. These plat-
forms currently make up a relatively small portion of 
all sequencing, largely because of lower raw accuracy 
and throughput than prevailing short-read technolo-
gies, but both have gained an increased following as the 
technologies have matured.

Because of their long reads, the most common use for 
single-molecule sequencers is de novo genome assembly 
and sequencing of complex repetitive regions or struc-
tural rearrangements90,91. However, long-read capability 
can be repurposed to improve genotyping accuracy of 
shorter regions through sequencing of tandem copies. 
One example is the intramolecular-ligated nanopore 
consensus sequencing (INC-Seq) method whereby the 
terminal 5ʹ and 3ʹ ends of single-stranded molecules are 
intramolecularly ligated to form closed loops that can 
be subjected to rolling-circle amplification followed by 
nanopore sequencing. The resulting reads comprise a 
long string of linked sense or antisense strands akin to 
the results of the CircSeq technique but with many more 
copies of much longer fragments92 (FIG. 3a). Although 
better than simple nanopore sequencing, the very low 
raw nanopore accuracy coupled with amplification 
errors leads to a final consensus error rate that is still 
inferior to the best short-read platforms.

A unique feature of single-molecule sequencers is 
that consensus sequencing can be achieved without any 
amplification. For the Oxford Nanopore platform, use of 
a hairpin adapter to link the two strands of an individual 
DNA duplex is the simplest form of amplification-free 
consensus sequencing, which requires neither an SDE 
nor a UMI93 (FIG. 3b). The incremental error correction 

achieved by sequencing both strands of a duplex (2D) as 
opposed to only one strand (1D) is still dwarfed by the 
substantial baseline nanopore error rate. In the future, 
it should be possible for the same linked pair of mole-
cules to be repeatedly passed back and forth through a  
nanopore for more rigorous consensus building88.

The first consensus sequencing method to verifia-
bly correct errors using both strands of an individual 
DNA molecule was the circular consensus sequencing 
(CCS) SMRTbell technique on the PacBio platform94. 
This approach relies on ligation of hairpin-shaped 
adapters to either end of a double-stranded template 
to form a closed loop, which is directly sequenced and 
produces multiple passes of data from each strand with-
out prior amplification (FIG. 3c). CCS has been applied 
to high-accuracy sequencing of error-prone repetitive 
sequences95, non-invasive detection of low-frequency 
cancer-derived mutations96, metagenomic deconvo-
lution97 and direct measurement of DNA polymerase 
error rates38,98. Under optimal conditions, the method 
can achieve accuracies of the order of 10−7 because jack-
pot artefacts from one strand are unlikely to occur as 
complementary changes on the other. However, because 
of lower raw accuracy, a dozen or more sequencer passes 
across the tandem copies, as well as treatment with DNA 
repair enzymes, are needed to achieve the maximum 
resolution38. The lower nucleotide output of the PacBio 
system as compared with more standard short-read plat-
forms means that ultra-rare variant detection is more 
challenging from a cost and time perspective.

Other emerging single-molecule technologies involv-
ing direct electrical base detection on microchips99 
may eventually allow similar opportunities. A recently 
announced single-molecule sequencing-by‑hybridization 
platform repeatedly interrogates individual bases by iter-
ative hybridization with different overlapping probes, 
which is effectively another embodiment of consensus 
sequencing100; the system should allow complete duplex 
error correction using UMIs or physical linkage of com-
plementary DNA strands. With further developed con-
sensus-based error-correction approaches, the unique 
benefits of all these newest-generation platforms, namely, 
very long reads, rapid library preparations and, in some 
cases, easy portability101, can be meaningfully realized in 
applications to detect low-frequency variants.

Considerations in choice of consensus method
Trade-offs between accuracy, cost, recovery, speed 
and read length mean that no single consensus-based 
error-correction method is optimal for every applica-
tion. Because most sequencers in use are short-read 
systems, techniques designed for these platforms have 
generally been favoured. Duplex approaches are by far 
the most accurate but also generally the most expensive 
per error-corrected base because of the need to sequence 
more duplicates to have a reasonable probability of 
recovering copies of both strands. Put another way, the 
consensus-making efficiency is lower because a greater raw 
sequencing depth is required to obtain a similar molec-
ular (consensus) depth than with single-stranded meth-
ods. Because the sensitivity for detecting a rare variant 
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is influenced by both error rate and the number of con-
sensus families generated at a given locus, what duplex 
methods gain in error rates comes at a greater cost for 
attaining sufficient molecular depth. For small genomic 
targets, this trade-off is acceptable but may become an 
important consideration with large multi-gene panels.

One substantial source of consensus-making ineffi-
ciency is non-uniformity of the amplification that is used 

to generate molecular copies. With duplex techniques, 
if one strand replicates better than the other, this may 
prevent a consensus from forming or require an inordi-
nately large number of raw reads to achieve a consensus. 
With single-stranded methods, if one locus amplifies 
better than another, a similar problem arises. Careful 
attention to factors that bias PCR efficiency, such as frag-
ment length, help to abrogate the issue. For example, in 
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Figure 3 | Methods of single-molecule sequencing consensus-based error correction. a | The intramolecular-ligated 
nanopore consensus sequencing (INC-Seq) method begins by circularizing single-stranded DNA fragments followed by 
rolling-circle amplification of the loop; each product is a long DNA strand comprising concatenated copies of one of 
the strands of the starting molecule. This is sequenced on a long-read platform. True mutations (circles) can be 
discerned from most sequencing or amplification errors (crosses). b | 2D nanopore sequencing involves ligation of a 
hairpin adapter to one end of a duplex DNA molecule followed by tandem nanopore sequencing of the linked original 
strands. c | The circular consensus sequencing (CCS) SMRTbell technique entails ligation of hairpin adapters to each 
end of a molecule, followed by direct sequencing of the closed loop on the long-read Pacific Biosciences (PacBio) 
platform. Both strands are sequenced together in multiple passes. In the latter two cases, consensus sequences 
incorporate data from both DNA strands.
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Molecular conversion 
efficiency
The fraction of inputted DNA 
molecules of interest that are 
recovered as consensus 
sequences. This is often 
described in terms of 
genome-equivalents.

a preliminary report, we recently described the use of 
targeted CRISPR–Cas9 digestion to generate DupSeq 
libraries of uniform length and further capitalized on 
this size specificity to enrich for genomic loci of inter-
est, thus further reducing competition during PCR62. 
Together, these features can improve consensus-making 
efficiency by an order of magnitude. A clever approach 
to eliminate amplicon competition and normalize yield 
per founding molecule using digital emulsion ampli-
fication has been demonstrated with both PCR and 
rolling-circle amplification71,77,102. Ultimately, the most 
efficient consensus sequencing approaches are those that 
do not require any amplification, but single-molecule 
technologies will need to improve considerably before 
this becomes a major consideration.

Another important factor when selecting a method is 
the molecular conversion efficiency — that is, the fraction 
of input DNA molecules that are recovered as consensus 
sequences. This is typically lower with duplex than with 
single-strand approaches because both halves of a mol-
ecule must successfully amplify, which may be impos-
sible if one is damaged or missing. Amplicon-based 
library preparation methods offer higher recovery and 
more rapid workflows than ligation followed by hybrid-
ization capture methods but do not retain complete 
duplex information. Simplicity and speed are important 
in clinical and some commercial settings. In situations 
where available DNA is limited, for example, in foren-
sics or liquid biopsy applications, maximum recovery is 
important to detect low-frequency variants. However, 
greater recovery does not necessarily portend higher 
sensitivity if substantially more errors are introduced. 
FIGURE 4 illustrates the relationship between sequenc-
ing accuracy and positive predictive value for standard 
NGS, single-strand consensus sequencing and DupSeq. 
Although single-strand consensus methods have an 
absolute accuracy of the order of 10−5, when attempt-
ing to detect variants that are present at a frequency of 
1 in 100,000, approximately 80% of called mutations will 
be errors. Higher-accuracy duplex methods are neces-
sary to reliably call mutations at this level. Increasingly 
sophisticated computational techniques are being devel-
oped to statistically integrate information from different 
types of consensus sequences and proportionally weight 
the certainty of called variants as a way to maximize data 
recovery while also retaining accuracy103,104. In addition, 
emerging hybrid biochemical methods that combine the 
benefits of PCR-based targeting on library preparation 
speed and conversion efficiency with the advantages of 
adapter-based molecular tagging are likely to further 
narrow current performance trade-offs105,106.

An important caveat is that with extreme accuracy 
comes new challenges from non-sequencing sources of 
errors. Certain artefacts that may be negligibly uncom-
mon with standard NGS become significant when the 
sequencing background is reduced. For example, rare 
mapping errors of closely related pseudogenes or low-
level cross contamination between samples during tissue 
processing can artificially appear as low-frequency vari-
ants. Slight carry-over between sequencer runs, amplifi-
cation chimaeras or clustering errors that leads to index 

shuffling37,51 can falsely make a clonal variant from one 
sample appear as a low-frequency mutation in another. 
Furthermore, when the technical background is reduced, 
newly apparent rare variants resulting from one process 
can easily be mis-assumed to be the result of another. 
For example, mutations commonly found in cancers can 
be detected at very low levels as part of normal ageing  
in healthy individuals and be a source of false positives in 
sensitive diagnostic tests107. High-accuracy sequencing is 
a powerful tool, but it necessitates particularly thorough 
controls and well-thought-out experimental designs and 
interpretations.

As a final note, we wish to emphasize that the above 
descriptions and the illustrations in FIGS. 2,3 are highly 
simplified representations of complex techniques and 
do not fully convey many of the informatic subtleties 
of analysis. For a better appreciation, we refer interested 
readers to a select list of relevant software packages at the 
end of this article and those included as supplementary 
information in cited papers.

Applications of rare variant detection
The history of innovations in NGS and technologies 
for improving its accuracy are best understood in the 

Nature Reviews | Genetics

Po
si

ti
ve

 p
re

di
ct

iv
e 

va
lu

e

Mutation frequency

Standard Illumina NGS (10–3)
Single-stranded tagging (10–5)
Duplex sequencing (<10–7)

10–1 10–2 10–3 10–4 10–5 10–6 10–7 10–8 10–9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4 | Impact of error correction technology on 
detection sensitivity. The positive predicted value (the 
expected number of correct positive calls divided by the 
total number of positive calls) is plotted as a function of the 
variant allele frequency in a molecular population for each 
sequencing method of a specified error rate. As seen by 
curve overlap, nearly all mutant calls will be correct using 
any method if the frequency of detected variants is greater 
than 1 per 10. However, the error rates of standard Illumina 
sequencing and single-stranded tag-based error 
correction result in critical losses in positive predictive 
value at variant frequencies of ~1 per 100 and 1 per 1,000, 
respectively. The extremely low error rate conferred by 
duplex sequencing enables confident identification of 
variants below 1 per 100,000 (dotted line). NGS, 
next-generation sequencing.
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Aneuploidies
Abnormal numbers of 
chromosomes in a cell. This 
may be inherited, such as 
trisomy 21, the basis of Down 
syndrome, or somatically 
acquired, such as in cancer.

context of scientific questions they have been devel-
oped to answer. In this section, we highlight major 
fields in which the detection of minority genetic var-
iants is important for medicine, biology and industry 
and provide examples of where the different approaches 
described above have been (or could be) applied (FIG. 5).

Cancer. Cancer is the ultimate disease of genetic hetero
geneity3,108. In the past decade, how it arises, progresses 
and spreads in the context of somatic evolution has been 
increasingly recognized109–113. The cells in a tumour are 
not uniform. Mutations arising during cell division 
under the influence of selective pressures, as well as 
random drift, can lead to the outgrowth of genetically 
divergent clones in spatially distinct areas of a primary 
tumour114–117 and derivative metastases118,119. Minority 
clones, which may be present at frequencies below the 
detection limits of conventional NGS techniques, can 
both drive tumour growth120 and be an important source 
of resistance to therapy and basis for relapse5,121–123; in 
fact, a higher degree of subclonal heterogeneity portends 
a worse prognosis in multiple tumour types124–126.

A particular challenge has been developing technol-
ogies that are robust enough for resolving heterogeneity 
in the clinical setting. Pre-existing subclonal drug-re-
sistance mutations in blood cancers have implications 
for the choice of initial therapy127,128. After treatment, 
detection of rare cells with leukaemia-associated muta-
tions using consensus sequencing indicates minimal 
residual disease (MRD) and the need for further treat-
ment129. In solid tumours, subclonal drug-resistance 
mutations are similarly relevant but may be missed 
by physical biopsy130. An intense area of research is 
the use of liquid biopsies to non-invasively genotype 
cell-free DNA (cfDNA) shed by tumours into plasma, 
which allows genetic sampling of more than one region 
of a cancer in a way that can be readily repeated as a 
tumour evolves104,131–133. Liquid biopsies are being used 
to detect both drug-sensitizing and drug-resistance 
mutations134, low-level MRD after surgery135,136 and to 
follow the response to treatment137. Tumour DNA can 
be found at low abundance in many body fluids138–142. In 
each case, consensus sequencing-based error-correction 
approaches (single-strand, duplex or both) have been 
demonstrated to improve the detection of rare subclonal 
mutants. The detection of mutations in a variety of body 
fluids has been used to screen for specific cancer types 
in asymptomatic individuals for some time140,141,143, but 
an even more ambitious prospect is the possibility of a 
universal pan-cancer-screening blood test144. To achieve 
the exceptionally low false-positive rate needed for use 
in healthy populations, especially given the breadth of 
the genome that must be examined at high depth to 
identify very early tumours of many types, near-perfect  
technical accuracy is required using the most robust 
error-corrected sequencing methods possible.

Ageing. Mutations occur with each cell division; thus, 
it is no surprise that they increase in number with age8. 
A long-standing and unanswered question is whether 
these mutations reflect a cause or effect of ageing; 

regardless, the association that has been found using 
duplex sequencing approaches is strong61,80. Subclonal 
mutations have been associated with the onset of age-
associated pathologies, such as neurodegeneration7,82. 
The greatest risk factor for cancer, a disease caused by 
mutations, is ageing145. Studies using conventional NGS 
have found clones bearing leukaemia-associated muta-
tions in the blood of a subset of healthy individuals at a 
size and frequency that increases with age146,147. Higher-
accuracy single-strand consensus sequencing methods 
have identified these mutations at lower frequencies in 
nearly all adults148. Using ultra-high-accuracy duplex 
consensus sequencing approaches, low-frequency 
age-associated mutations have been directly measured in 
multiple human tissues61, many of which are common to 
cancers149,150. This highlights both the novel discoveries 
that come with greater accuracy and the new challenges 
the knowledge brings, for example, in mutation-based 
cancer screening107. Whether age-associated subclonal 
mutation patterns will be able to predict future cancer 
risk or longevity remains to be explored.

Mutagenesis. Our bodies are exposed to endogenous 
and exogenous mutagens throughout life. It has long 
been known, using artificial selection-based assays, 
that mutations can be induced by genotoxic chemicals 
but only recently has it been possible to detect these 
directly60,61. Instead of being limited to reporter genes, 
the highest accuracy duplex sequencing approaches can 
evaluate mutagenesis at any genomic site of any organ-
ism and have the potential to become a new standard of 
genotoxicity evaluation85,102,151–153. New methods of thera
peutic genome modification can lead to rare off-target 
mutagenesis through mechanisms that are not easily 
recapitulated in model organisms154. The same holds 
true for treatments that are not intended to modify the 
genome but with the theoretical potential for mutagen-
esis155. Emerging cellular therapies where stem cells are 
harvested and propagated ex vivo can introduce substan-
tial numbers of mutations21. Given the rapid emergence 
of new medical technologies, it is important that we have 
equally powerful tools to carefully monitor their genetic 
consequences.

Maternal–fetal biology. Pregnancy is a state of chimer-
ism: two genomes inhabit the same body and intermix. 
Even after birth, a mother and child remain genetically 
intertwined. Extremely rare populations of fetal cells can 
persist in a woman for decades156. This interesting state of 
prolonged immunotolerance may play a contributory role 
in autoimmune disease, miscarriages and pre-eclampsia 
but also appears to confer certain benefits, particularly 
cancer protection. Until recently, genetic techniques for 
studying these rare populations of cells have been inad-
equate157. During pregnancy itself, apoptosis of placental 
cells releases fetal DNA into the maternal circulation 
where it can be collected for non-invasive prenatal test-
ing (NIPT). Fetal aneuploidies can be clinically detected 
by NGS with relative technical ease by simply counting 
the relative proportions of different chromosomes, even 
though fetal DNA is in the minority158,159. In fact, one 
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Metagenomics
The study of complex microbial 
populations encompassing 
many co‑mingling species that 
form an ecosystem, for 
example, an individual’s gut 
microbiota.

early indication of the feasibility of DNA-based can-
cer screening was the incidental detection of maternal 
cancers from non-fetal chromosomal imbalances found 
during NIPT160. Complete fetal genomes have been 
assembled from sequencing of cfDNA in maternal blood 
based on paternally inherited single nucleotide polymor-
phisms (SNPs), albeit using low-accuracy conventional 
NGS. To become viable as a clinical means of prenatally 
detecting de novo point mutations, ultra-accurate meth-
ods will need to be employed. This is particularly true of 
disease-causing mutations that arise mosaically during 
embryogenesis161,162. A distinct but related application of 
identifying foreign SNPs in cfDNA is the early detection 
of organ transplant rejection163.

The immune system. An individual’s immune system is 
finely tuned for generating genetic heterogeneity through 
sanctioned V(D)J recombination and somatic hyper-
mutation; a single blood sample may contain hundreds 
of thousands of different T cell receptor and immuno
globulin sequences164. This genetic profile changes in 
response to infections, immunization and age, among 
many other states165,166. The adaptive immune system 
plays a role in defence against neoplasia, and the genetic 
pattern of tumour-infiltrating lymphocytes (TILs) can 
reflect both prognosis and the likelihood of response 
to therapy166,167. On the other end of the immune spec-
trum is overactivity. It has been theorized that some 
autoimmune disease may develop in response to sub-
clonal somatic mutations in non-immune tissues168. 
Chronic stimulation of the immune system also causes 
low-frequency off-target somatic hypermutation in lym-
phocytes themselves, leading to lymphoma169. In each 
category, high-accuracy consensus sequencing methods 

of multiple varieties are proving critical for disentangling 
the immunological heterogeneity of both physiological 
and pathological states.

Microbial populations. Our bodies contain at least as 
many microorganisms as human cells. Although some 
can cause disease, a greater number serve symbiotic 
functions, such as building or metabolizing molecules, 
outcompeting pathogenic organisms and training our 
immune systems170,171. Colonization begins even before 
birth, and the stability of the ecosystem that develops 
influences health processes, including allergy develop-
ment and autoimmune reactions172, changes in body  
weight173 and responses to medications174, among oth-
ers. Early successes with therapeutic microbiota trans-
plantation further indicates the importance of these 
populations175,176.

The study of the composition of metagenomics ensem-
bles with traditional techniques is not trivial. Some 
organisms grow poorly in culture or not at all. Viruses, 
fungi, protozoa and highly divergent phyla of bacteria 
that coexist in vivo often require unique growth condi-
tions in vitro. In the case of a suspected infection, being 
able to quickly identify the causative agent or agents and 
predict which therapies will be most efficacious is clin-
ically important but not always possible. Whereas clini-
cal decisions about antimicrobials often must be made 
in minutes or hours, traditional culture takes hours or 
days and, in some cases, even weeks177. NGS has emerged 
as a powerful and universal means of characterizing 
pan-kingdom microbial populations178. High-speed NGS 
workflows can now identify organisms causing sepsis and 
predict their drug sensitivity in a matter of hours179,180.

However, speed is not the only challenge in clinical 
microbial sequencing. When the genomes of organisms 
in a polymicrobial sample are very distinct, standard 
NGS can readily identify minority populations. When 
a population’s constituents are genetically similar, how-
ever, sequencing errors prevent variant detection below 
approximately 1%. Because the evolutionary success of 
many pathogens is predicated on rapid evolvability to 
circumvent host immune responses, many mutate read-
ily to form heterogeneous populations of closely related, 
but genetically distinct members, collectively known as 
a quasispecies181,182. Deep sequencing has shown that 
the emergence of low-level drug-resistance mutations 
in multiple types of infections including HIV4,13,183, viral 
hepatitis184,185 and tuberculosis186 can predict thera
peutic failure. As in oncology, consensus-based NGS 
error-correction approaches enable detection of rarer 
drug-resistance mutations56, potentially affording the 
opportunity for earlier interventions if found. Perhaps 
just as importantly, the ability to confidently recognize 
the absence of such mutations might allow one to avoid 
unnecessary use of broad-spectrum agents.

Other applications. The utility of deconvolving hetero-
geneous, closely related mixtures of nucleic acids extends 
beyond medicine. Of the innumerable free-living micro-
organisms in the natural world, the majority have never 
been isolated or cultured187. Direct high-accuracy NGS 

Figure 5 | Applications of rare variant detection. a | Cancer evolution. Genetic 
heterogeneity within tumours is thought to be responsible for the emergence of 
therapeutic resistance. In lung adenocarcinomas with certain epidermal growth factor 
receptor (EGFR) mutations under treatment with targeted inhibitors, drug-resistance 
mutations arise at low levels then clonally expand. b | Cell-free tumour DNA. Tumour cells 
release fragments of DNA into plasma and other body fluids that can be sampled via 
liquid biopsy. This serves as a non-invasive means of determining the genetic makeup of a 
tumour without a physical biopsy and is a sensitive way to detect minimal residual 
disease and early relapse. c | Circulating fetal DNA. Placental-derived DNA in the 
maternal circulation can be used to non-invasively detect fetal genetic traits or 
abnormalities. d | Fetal microchimerism. Fetal cells that engraft into a mother may persist 
many years after birth. These have important immunological consequences. 
e | Immunological mosaicism. Somatic V(D)J recombination and hypermutation in B cells 
and T cells create heterogeneity that helps the body adapt defences to new infectious 
and neoplastic threats. f | Antimicrobial resistance. Low-frequency variants in single-cell 
organism populations can be responsible for drug-resistance outbreaks. 
g | Metagenomics. Complex mixtures of microorganisms exist throughout the living 
world. The human body is colonized with symbiotic microorganisms and, in some 
diseases, health problems can arise from disrupted microbial diversity. h | Forensics. 
Mixtures of human tissues are routinely recovered at crime scenes or natural disasters.  
In some scenarios, the abundance of DNA from one individual may be much greater than 
that of another. i | Mutagenic exposure. DNA damage can be caused by normal ageing 
and by carcinogens. Very-low-frequency mutation load may be proportional to future 
cancer risk. j | Ageing. DNA damage occurs throughout life from exogenous and 
endogenous processes. Low-frequency mutations in both the nuclear and mitochondrial 
genome (the latter is shown here) may play a role in certain age-related pathologies in 
addition to cancer, such as neurodegeneration and autoimmunity. Subclonal mutations 
might serve as a biomarker of disease risk or even longevity.
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of environmental samples is an important tool for iden-
tifying novel protein variants with potential industrial 
applications188, for monitoring ecological health189 and 
for facilitating food safety testing, including the detec-
tion of low-frequency drug-resistant microbial strains190. 
In forensics, the ability to confidently distinguish mix-
tures of DNA contributed from different individuals is 
critical, given the consequence of mistakes106,191. High-
accuracy sequencing methods are especially impor-
tant when heterogeneous mixed samples are degraded 
and therefore more error prone, as may occur at both 
modern crime scenes and with ancient DNA from  
archaeological sites192.

Conclusions
Within the span of a single human lifetime, we have 
gone from recognizing DNA as genetic material193 to 
sequencing the human genome194. Despite this remark-
able progress, many opportunities remain. For exam-
ple, the structure of certain highly repetitive regions in 
many organisms is still unknown. In fact, for this reason, 
we have yet to assemble even one genuinely complete 
human genome. Both emerging long-read technologies 
and techniques for phasing and accurately assembling 
short-read data using fragment barcoding methods72,195 
or DNA crosslinking techniques196 are bringing us 
closer, but they are not yet accurate enough to reliably 
detect very-low-frequency subclonal heterogeneity of 
structural variation despite the clinical importance in 
both the somatic and neoplastic settings197,198. Another 
substantial challenge on the horizon is combining 
ultra-accurate single-cell genomic information with 
other types of ‘omic’ technologies and contextualizing 
with higher-order topological relationships between  
individual cells within a tissue (BOX 1).

We began this Review by enumerating NGS tech-
nologies that have had a major impact on the ability to 
detect subclonal variants and discussed the many fields 
in which NGS has benefitted or will soon benefit from 
this high accuracy. Biological and clinical questions that 
were previously intractable can now be approached. A 
meaningful vision of the future should not only focus on 
improvements to established areas but also address the 
role of high-accuracy DNA sequencing in delineating 
new and important hypotheses. Sequencing technology 
is advancing more quickly than ever before. Just as evo-
lution is the driving force behind the progression of all 
life on Earth, so too is it with technology: the popularity 
of new sequencing methods will continue to rise and 
fall, but the discoveries that come from each will remain 
immortal. It is important to remember that methods are 
merely tools, not themselves answers; it is on the creative 
and responsible applications of these new technologies 
where we should focus our greatest attention.
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